NOTE

Extendibility of Rational Matrices

Ding-Xuan Zhou*
Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
Communicated by R. Q. Jia

Received December 27, 1994; accepted in revised form September 4, 1995

Abstract

A Characterization of extendibility of rational matrices is presented in terms of elementary properties. As a tool we give a solvability condition for a system of linear diophantine equations, which is of independent interest. © 1997 Academic Press

The property of extendibility of rational matrices was introduced by Sivakumar [3] in his investigation of linear independence of integer translates of exponential box splines with rational directions. This property was subsequently extended and refined by Ron [2]. The purpose of this note is to provide a characterization of extendibility in terms of elementary properties.

Definition. Let $Y \subset \mathbf{Q}^{s}$ be a linearly independent set of $1 \leqslant k \leqslant s$ vectors. We say that Y is extendible if there is a matrix $X_{s \times s}$ with an integral inverse whose first k columns constitute Y. For an arbitrary $s \times n$ matrix Ξ, we say that Ξ is fully extendible if every linearly independent subset Y of Ξ is extendible.

Note that any $s \times n$ rational matrix can be written as $(1 / P) \boldsymbol{\Xi}$ with $P \in \mathbf{N}$ and $\Xi \in \mathbf{Z}^{s \times n}$, which is crucial in our investigation of box splines with rational directions [5]. So in what follows we always take such a form for a rational matrix. For an $l \times m$ integer matrix A we also think of it as the multiset of its column vectors and denote $\# A$ as its cardinality. Also define $d_{A, r}$ as the greatest common divisor of all $r \times r$ minors of A. Set $d_{A, 0}=1$. Then our main result can be stated as follows.

[^0]Theorem 1. Let $\Xi \in \mathbf{Z}^{s \times n}$ and $P \in \mathbf{N}$. Then $(1 / P) \Xi$ is fully extendible if and only if for every linearly independent maximal subset $Y \subset \Xi$, i.e., $\# Y=$ $\operatorname{rank} Y=\operatorname{rank} \Xi$, there holds

$$
\begin{equation*}
\left.\frac{d_{Y, \# Y}}{d_{Y, \# Y-1}} \right\rvert\, P . \tag{1}
\end{equation*}
$$

Remark. In the bivariate case a characterization of extendibility was obtained in [3, Prop. 3.6].

To prove Theorem 1, we need to extend two results of Jia [1, Corollary 3.3] and the author [4, Lemma 2] on solvability of a system of linear diophantine equations, which is of independent interest.

Theorem 2. Let $A \in \mathbf{Z}^{l \times m}$ be an integer matrix of full row rank and $P \in \mathbf{N}$. Then the following system of linear diophantine equations

$$
\begin{equation*}
A y=P b \tag{2}
\end{equation*}
$$

has integer solutions for any $b \in \mathbf{Z}^{l}$ if and only if

$$
\begin{equation*}
\left.\frac{d_{A, l}}{d_{A, l-1}} \right\rvert\, P \tag{3}
\end{equation*}
$$

Proof of Theorem 2. We use the method of Jia [1].
By [1, Theorem 3.2] the sufficiency is trivial.
To prove the necessity, we let b be e_{j}^{l}, the j th column of the $l \times l$ identity matrix I_{l}, then the system of linear diophantine equations (2) has integer solutions, which implies by [1, Theorem 3.2] $d_{A, l}=d_{\left[A, P e_{j}^{\prime}\right], l}, 1 \leqslant j \leqslant l$. Hence $d_{A, l} \mid P d_{A, l-1}$. Note that $d_{A, l-1} \mid d_{A, l}$. The conclusion (3) is obtained.

The proof of Theorem 2 is complete.
Once Theorem 2 holds, Theorem 1 follows.
Proof of Theorem 1. It is easily seen that $(1 / P) \Xi$ is fully extendible if every linearly independent maximal subset is extendible.

Let $Y:=\left\{y_{1}, \ldots, y_{l}\right\} \subset \Xi$ satisfy $l=\operatorname{rank} Y=\operatorname{rank} \Xi$. We state that $(1 / P) Y$ is extendible if and only if there exists a basis $Z:=\left\{z_{1}, \ldots, z_{l}\right\} \subset \mathbf{Z}^{s}$ dual to $(1 / P) Y$, i.e.,

$$
\begin{equation*}
\frac{1}{P} Y^{T} Z=I_{l} \tag{4}
\end{equation*}
$$

The necessity of this statement follows directly from the definition.

To see the sufficiency, choose $\left\{\tilde{z}_{j}: l+1 \leqslant j \leqslant s\right\} \subset \mathbf{Z}^{s}$ such that $\left\{z_{j}: 1 \leqslant\right.$ $j \leqslant l\} \cup\left\{\tilde{z}_{j}: l+1 \leqslant j \leqslant s\right\}$ are linearly independent. Then we define for $l+1 \leqslant j \leqslant s$,

$$
\begin{equation*}
z_{j}=P \tilde{z}_{j}-\sum_{k=1}^{l}\left(y_{k}^{T} \tilde{z}_{j}\right) z_{k} \in \mathbf{Z}^{s} . \tag{5}
\end{equation*}
$$

Trivially, $\left\{z_{j}: 1 \leqslant j \leqslant s\right\}$ are linearly independent, and the first l columns of $\left(\left[z_{1}, \ldots, z_{s}\right]^{T}\right)^{-1} \in \mathbf{Q}^{s \times s}$ constitute $(1 / P) Y$, since for $1 \leqslant i \leqslant l,\left[z_{1}, \ldots, z_{s}\right]^{T}$ $(1 / P) y_{i}=\left((1 / P) y_{i}^{T}\left[z_{1}, \ldots, z_{s}\right]\right)^{T}=e_{i}^{s}$.

Thus the matrix $(1 / P) Y$ is extendible if and only if for any $b \in \mathbf{Z}^{l}$, the following system of linear diophantine equations

$$
Y^{T} y=P b
$$

has integer solutions, which is equivalent to (1) by Theorem 2.
The proof of Theorem 1 is complete.
In the proof of Theorem 1, we have in fact shown the following more general result.

Theorem 3. Let $P \in \mathbf{N}$ and $Y \subset \mathbf{Z}^{s}$ be a linearly independent set. Then $(1 / P) Y$ is extendible if and only if

$$
\left.\frac{d_{Y, \# Y}}{d_{Y, \# Y-1}} \right\rvert\, P .
$$

REFERENCES

1. R. Q. Jia, Multivariate discrete splines and linear diophantine equations, Trans. Amer. Math. Soc. 340 (1993), 179-198.
2. A. Ron, Remarks on the linear independence of the integer translates of exponential box splines, J. Approx. Theory 71 (1992), 61-66.
3. N. Sivakumar, Concerning the linear dependence of integer translates of exponential box splines, J. Approx. Theory 64 (1991), 95-118.
4. D.-X. Zhou, Some characterizations for Box spline wavelets and linear diophantine equations, submitted for publication.
5. D.-X. Zhou, Box splines with rational directions and linear diophantine equations, J. Math. Anal. Appl. 203 (1996), 270-277.

[^0]: * The author is supported by the Alexander von Humboldt Foundation. This paper was written while the author was visiting the Department of Mathematics, University of Duisburg, D-47048 Duisburg, Germany.

