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A Characterization of extendibility of rational matrices is presented in terms of
elementary properties. As a tool we give a solvability condition for a system
of linear diophantine equations, which is of independent interest. � 1997 Academic

Press

The property of extendibility of rational matrices was introduced by
Sivakumar [3] in his investigation of linear independence of integer trans-
lates of exponential box splines with rational directions. This property was
subsequently extended and refined by Ron [2]. The purpose of this note
is to provide a characterization of extendibility in terms of elementary
properties.

Definition. Let Y/Qs be a linearly independent set of 1�k�s vec-
tors. We say that Y is extendible if there is a matrix Xs_s with an integral
inverse whose first k columns constitute Y. For an arbitrary s_n matrix 5,
we say that 5 is fully extendible if every linearly independent subset Y of
5 is extendible.

Note that any s_n rational matrix can be written as (1�P)5 with P # N
and 5 # Zs_n, which is crucial in our investigation of box splines with
rational directions [5]. So in what follows we always take such a form for
a rational matrix. For an l_m integer matrix A we also think of it as the
multiset of its column vectors and denote *A as its cardinality. Also define
dA, r as the greatest common divisor of all r_r minors of A. Set dA, 0=1.
Then our main result can be stated as follows.
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Theorem 1. Let 5 # Zs_n and P # N. Then (1�P)5 is fully extendible if
and only if for every linearly independent maximal subset Y/5, i.e., *Y=
rank Y=rank 5, there holds

dY,*Y

dY, *Y&1 } P. (1)

Remark. In the bivariate case a characterization of extendibility was
obtained in [3, Prop. 3.6].

To prove Theorem 1, we need to extend two results of Jia [1, Corollary
3.3] and the author [4, Lemma 2] on solvability of a system of linear
diophantine equations, which is of independent interest.

Theorem 2. Let A # Zl_m be an integer matrix of full row rank and
P # N. Then the following system of linear diophantine equations

Ay=Pb (2)

has integer solutions for any b # Zl if and only if

dA, l

dA, l&1 } P. (3)

Proof of Theorem 2. We use the method of Jia [1].
By [1, Theorem 3.2] the sufficiency is trivial.
To prove the necessity, we let b be el

j , the j th column of the l_l identity
matrix Il , then the system of linear diophantine equations (2) has integer
solutions, which implies by [1, Theorem 3.2] dA, l=d[A, Pej

l], l , 1� j�l.
Hence dA, l | PdA, l&1. Note that dA, l&1 | dA, l . The conclusion (3) is obtained.

The proof of Theorem 2 is complete.

Once Theorem 2 holds, Theorem 1 follows.

Proof of Theorem 1. It is easily seen that (1�P)5 is fully extendible if
every linearly independent maximal subset is extendible.

Let Y :=[ y1 , ..., yl]/5 satisfy l=rank Y=rank 5. We state that
(1�P)Y is extendible if and only if there exists a basis Z :=[z1 , ..., zl]/Zs

dual to (1�P)Y, i.e.,

1
P

YTZ=Il . (4)

The necessity of this statement follows directly from the definition.
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To see the sufficiency, choose [z~ j : l+1� j�s]/Zs such that [zj : 1�
j�l] _ [z~ j : l+1� j�s] are linearly independent. Then we define for
l+1� j�s,

zj=Pz~ j& :
l

k=1

( yT
kz~ j)zk # Zs. (5)

Trivially, [zj : 1� j�s] are linearly independent, and the first l columns of
([z1 , ..., zs]

T)&1 # Qs_s constitute (1�P)Y, since for 1�i�l, [z1 , ..., zs]
T

(1�P) yi=((1�P) yT
i [z1 , ..., zs])T=es

i .
Thus the matrix (1�P)Y is extendible if and only if for any b # Zl, the

following system of linear diophantine equations

YTy=Pb

has integer solutions, which is equivalent to (1) by Theorem 2.
The proof of Theorem 1 is complete.

In the proof of Theorem 1, we have in fact shown the following more
general result.

Theorem 3. Let P # N and Y/Zs be a linearly independent set. Then
(1�P)Y is extendible if and only if

dY,*Y

dY, *Y&1 } P.
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